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a b s t r a c t 

Analytical and numerical approach are taken into consideration to analyze the propaga- 

tion behavior of horizontally polarized shear surface waves (SH-wave) influenced by an 

impulsive point source in pre-stressed heterogeneous Voigt-type viscoelastic orthotropic 

functionally graded (FGM) layered structure. The mechanical properties of the material of 

viscoelastic functionally graded layer vary with respect to a certain depth as a hyperbolic 

function, while it varies as a quadratic function for the viscoelastic functionally graded 

half-space. The complex wave velocity of SH-wave has been achieved by the method of 

Green’s function and Fourier transformation under the appropriate boundary conditions of 

the adopted model. The derived wave velocity of SH-waves has been reduced to the clas- 

sical equation of Love wave when both the viscoelastic orthotropic FGM layer and half- 

space are considered to be homogeneous isotropic elastic, as depicted in the section of 

particular cases and validation. Moreover, numerical computation of the obtained velocity 

equation has been performed and the substantial effects of viscoelasticity and heterogene- 

ity on phase velocity as well as attenuation coefficient for both the cases of absence and 

presence of initial stress in the media have been perceived by the means of graphs. The 

final results of this work may be relevant to understand the useful information of SH-wave 

propagation in the considered layered structure. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The study of seismic waves is one of the most important phenomena for understanding the surface and internal struc-

ture of the Earth. Geophysicists and seismologists analyses the traversal behavior of seismic waves such as Rayleigh wave,

SH-wave, torsional wave, P-wave, and S-wave, etc. in order to model Earth’s interior and also to investigate the nature of

earthquake sources with the ultimate goal of mitigation and eventually controlling the phenomena. These seismic waves

behave differently when they pass through different types of material with different physical states (for example, solid,

molten, semi-molten). The behaviour of these seismic waves such as their strength, and the direction form where they are

originated are recorded at the seismic stations and utilised by geologists for better understanding of the Earthquake as well

as Earth’s crust. A detailed theoretical information as well as applications regarding the analysis of seismic waves in layered

media are provided in well established literatures (Ewing et al. [1] , Love [2] , Gubbins [3] and Pujol [4] ) 

Many researchers in the existing literatures (Vinh et al. [5] , Gourgiotis and Georgiadis [6] , Dutta [7] , Singh [8] , Zhu et al.

[9] and Pang et al. [10] ) have considered the seismic wave propagation in a model constituted of isotropic elastic and ho-
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mogeneous material. Although, isotropic material is the basics constituent for anisotropic and smart material, it is regarded

as ideal case. Furthermore, it is to be noted that the Earth is composed of different layers with different material and ge-

ological characteristics that is highly responsible for large alteration and acute changes in their material properties. These

variations in elastic bodies contribute to the heterogeneity of the medium and have prominent influence on the behaviour

of seismic waves. The mechanical behaviour of natural geomaterials, such as natural clay deposits built up by sedimentation

and subsequent consolidation, or rock masses cut by discontinuities, etc., may display both heterogeneity and anisotropic.

Orthotropic materials is the subset of anisotropic material which has different material properties along three mutually

orthogonal directions. Wood, composites, many crystals, and rolled metals fall under the categories of orthotropic material.

Destrade [11] derived the existence of surface waves in orthotropic incompressible materials. Abd-Alla and Ahmed [12] stud-

ied the Love wave passes through the orthotropic elastic medium under initial stress. Many seismologists and researchers

mostly prefer the anisotropic and heterogeneous coupled structure to analyze the influence of heterogeneity on surface wave

propagation and in order to gain deep insight about the Earth’s internal structure. Wilson [13] was the first to describe the

traversal characteristics of surface waves through heterogeneous layered structure. Dey et al. [14] delineated the traversal

of torsional surface wave in quadratic and exponential functioned heterogeneous layer. In addition to heterogeneity and

anisotropy, the initial stress is another trivial property of an elastic body. Various factors like overburdening of layers, gravi-

tational field, atmospheric pressure, and slow process of creep etc. are responsible for the generation of initial stress. These

stresses are highly responsible for the instability arising in ground which leads to generation of earthquakes. Therefore, it

is obligatory to discuss the traversal characteristics of elastic surface waves in an initially stressed layered structures. Biot

[15] described the impact of initial stress and gravitational field on elastic body in detail. Saha et al. [16] examined the

effect of compressive and tensile stresses on the propagation of torsion surface waves. They noted that the initial stresses

(compressive or tensile) have a significant impact on the speed of surface waves. Since the earth has an initially stressed

elastic body, it is more realistic to consider the initial stress effect. Many authors such as Kundu et al. [17] , Ke et al. ( [18] ,

[19] ), Wang et al. [20] and Abd-Alla et al. [21] have produced their valuable view on the influence of heterogeneity and

initial stress on the traversal of seismic surface waves. 

Viscoelasticity play a major role in the motion and behaviour of the tectonic plates, the plates floating on the Earth’s

mantle and moving independently are responsible for vibration, volcanoes and earthquakes, etc. Mechanical materials such

as sediments, salt and coal tar which are buried under the Earth’s surface can be modelled as viscoelastic material. High

internal damping is unique characteristics of the viscoelastic materials leading to the damping of waves and vibrations

created during an artificial exploration and earthquake. Consequently, these viscoelastic materials are proficiently utilized

in vibration and noise control, position and shape control, non-destructive evaluation and health monitoring systems, and

in many branches of engineering. Carcione [22] was the first to investigate the propagation of seismic waves not only by

anisotropy but also by the intrinsic viscosity of the media. In addition, Borcherdt [23] and Carcione [24] discussed the

traversal of Rayleigh-type waves in a viscoelastic medium. Presently, Maity et al. [25] have published a paper on torsional

wave vibrations through viscoelastic fiber-reinforced medium. They have studied the internal friction (viscoelasticity) has 

pronounced impact on the dispersion and attenuation (arises due to a complex wave number) of torsional waves. 

Due to the gradual change in material properties, the functionally graded materials have attracted much more attention

in recent years with their increasing use in various applications. The current areas of applications include aerospace, auto-

mobile, electrical/electronic, energy and marine etc. Similarly, these are currently used in many industries and will also be

used in many applications in the future. Therefore, it’s a vital part to study the traversal of seismic wave problems in such

type of materials. Hence, we have considered here the FGM composed of orthotropic material with Voigt-type viscoelastic

under initial stress. The study of seismic wave problems through the FGM plates and FGPM plates has been discussed by

many researchers, some of whom are Kong et al. [26] , Paulino and Jin [27] , Yu and Zhang [28] , Qian et al. [29] and Yu et al.

[30] . In addition to that, Ren et al. [31] , Li et al. [32] , Qian et al. [33] and Liu and Wang [34] also studied the traversal

of Love wave in FGM structure. They examined in detail the effects of proposed parameters on the dispersion curves such

as gradient coefficients, piezoelectric and dielectric constants. Keeping these facts in mind, authors have made an effort to

undertake the present study of the shear wave propagation due to impulsive point source in pre-stressed heterogeneous

viscoelastic orthotropic FGM layer and half-space, which has not been attempted by any authors till date. 

Almost all authors have applied the conventionally developed methods such as separation of variables, variational

method, integral transformation, etc., in order to solve the equations of motion for any material medium of the Earth’s

crust. But in this problem, the technique of Green’s function and Fourier transformation have been applied to solve the gov-

erning equations associated with the concerned medium. The main reason behind applying this method is that the Green’s

function imparts a phenomenal elucidation of behavior related to forces focused on a point which works as a disturbance

source. These forces are formed by a unit impulsive force in time and space, which can be mathematically expressed with

the help of Dirac delta function. Green’s function exhibits a crucial role for solving the elastodynamic problems related to

the point source or an impulse force responsible for wave movements in material medium. In the field of science and tech-

nology, the applications of Green’s function are related with the Initial and Boundary Value Problems, Kirchhoff’s Diffusion

Equation, Wave Equation, Helmholtz’s Equation and Diffraction Theory etc. So far, only a few research work based on the

technique of such functions has been carried out, which is attracting the attention of researchers and practitioners in the

area of mechanics of solids, applied mathematics, applied physics, material science and mechanical engineering. The au-

thors Assari and Dehghan ( [35] , [36] , [37] ) have solved two dimensional Laplace’s equation with the aid of Robin boundary

conditions based on the boundary integral equations using Green’s function technique. 
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Fig. 1. Structure of viscoelastic orthotropic FGM layered Earth model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main concern of the present work is to analyze the propagation characteristics of the SH-wave influenced by an

impulsive point source in an orthotropic viscoelastic FGM finite layer overlying orthotropic viscoelastic FGM semi-infinite

medium under the effect of initial stresses. Closed form of complex wave velocity equation of shear surface wave has been

obtained with the help of Fourier transform and Green’s function technique. The phase velocity and attenuation curves

against wave number is plotted from real and imaginary terms of the obtained wave velocity equation. In the numerical

section, the crucial observations and impact on phase velocity and attenuation coefficient against wave number have been

discussed by varying values of the proposed parameters such as heterogeneities and viscoelasticity factors. In addition to

that, a comparative study is point out to examine the effect of influencing parameters for both the cases of presence and

absence of initial stress on the traversal of SH-waves in considered model. 

2. Formulation of physical model and its solution 

In the context, consider a semi-infinite pre-stressed viscoelastic orthotropic functionally graded material covered with

pre-stressed viscoelastic orthotropic FGM layer of finite width H under the different kind of heterogeneities. A rectangular

Cartesian frame Oxyz is chosen in order to represent our model where the origin O is taken at the upper surface. Propagation

of surface shear wave (SH-wave) is taken along x -axis i.e. the horizontal direction whereas the alignment of z -axis is in

vertically downward direction, as depicted in Fig. 1 . The source of disturbance S is considered at a common interface of

the adopted model. The orthotropic viscoelastic layer and semi-infinite medium are defined as the region 0 ≤ z ≤ H and

H ≤ z < ∞ , respectively. 

The orthotropic viscoelastic constitutive equation can be written in the following form (Yu et al. [30] ) 

τ l 
11 = μl 

11 e 11 + μl 
12 e 22 + μl 

13 e 33 , 

τ l 
22 = μl 

21 e 11 + μl 
22 e 22 + μl 

23 e 33 , 

τ l 
33 = μl 

31 e 11 + μl 
32 e 22 + μl 

33 e 33 , 

τ l 
12 = 2 μl 

66 e 12 , 

τ l 
23 = 2 μl 

44 e 23 , 

τ l 
31 = 2 μl 

55 e 31 , 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

l = 1 , 2 (1)

where e i j = 

1 
2 

(
u i, j + u j,i 

)
and τ l 

i j 
are the components infinitesimal strain and incremental stress, respectively. and 

μl 
i j = 

̂ μl 
i j + ̂

 ηl 
i j 

∂ 

∂t 
(2)

In the considered layered Earth model, the variation of mechanical properties such as elastic parameter, viscoelastic coeffi-

cient, initial stress and density for orthotropic viscoelastic FGM layer and half-space have been adopted as follows: 

̂ μ1 
i j = μ11 

i j cosh 

2 
(γ z) , ̂ η1 

i j = η11 
i j cosh 

2 
(γ z) , P 1 = P 11 cosh 

2 
(γ z) , ρ1 = ρ11 cosh 

2 
(γ z) (3)

and 

̂ μ2 
i j = μ12 

i j + ε ( z − H ) 2 , ̂ η2 
i j = η12 

i j + ε ( z − H ) 2 , P 2 = P 12 + ε ( z − H ) 2 , ρ2 = ρ12 + ε ( z − H ) 2 (4)
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Using the Eqs. (3) and (4) in Eq. (2) , we have 

μ1 
ij = 

(
μ11 

ij + η11 
ij 

∂ 

∂t 

)
cosh 

2 
( γ z ) 

ρ1 = ρ11 cosh 

2 
( γ z ) 

P 1 = P 11 cosh 

2 
( γ z ) 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

(5) 

and 

μ2 
ij = 

(
μ12 

ij + η12 
ij 

∂ 

∂t 

)
+ 

(
1 + 

∂ 

∂t 

)
ε ( z − H ) 

2 

ρ2 = ρ12 + ε ( z − H ) 
2 

P 2 = P 12 + ε ( z − H ) 
2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

(6) 

where, μ11 
i j 

, η11 
i j 

, ρ11 , P 11 and γ are elastic constant, viscoelastic coefficient, density, initial stress and heterogeneity pa-

rameter for viscoelastic layer. Similarly, μ12 
i j 

, η12 
i j 

, ρ12 , P 12 and ε are elastic constant, viscoelastic coefficient, density, initial

stress and heterogeneity parameter for viscoelastic half-space. 

Horizontal polarized shear surface waves (SH-wave) conditions : Let the displacement components for the Voigt-type vis- 

coelastic orthotropic FGM upper layer and lower semi-infinite medium be ( u 1 , v 1 , w 1 ) and ( u 2 , v 2 , w 2 ), respectively. Hence

the characteristics of shear wave propagation are given by 

u i = w i = 0 , 
∂ 

∂y 
= 0 and v i = v i (x, z, t) , i = 1 , 2 (7)

2.1. Solution for the bounded medium 

If the medium is affected by a point source, the governing equations are 

τ 1 
i j, j + F i 

′ = ρ1 ̈u i , (8) 

where ρ1 and τ 1 
i j 

are the density and components of stress, respectively; F ′ 
i 

are the forces at a point of the upper layer

where the elastic displacements are evaluated. 

The dynamic equation of SH-wave in Voigt-type viacoelastic orthotropic functionally graded layer under the initial stress

is 

∂τ 1 
12 

∂x 
+ 

∂τ 1 
23 

∂x 
− P 1 

∂ w z 

∂x 
− ρ1 

∂ 2 v 1 
∂t 2 

= 4 πσ1 (r, t) (9) 

where P 1 , w z and σ 1 ( r, t ) are initial stress, rotational component and force density of the medium, respectively. 

Using Eqs. (1) and (5) in Eq. (9) , we get 

∂ 

∂x 

[(
μ11 

66 + η11 
66 

∂ 

∂t 

)
cosh 

2 
( γ z ) 

∂v 1 
∂x 

]
+ 

∂ 

∂z 

[(
μ11 

44 + η11 
44 

∂ 

∂t 

)
cosh 

2 
( γ z ) 

∂v 1 
∂z 

]
−P 11 

2 

cosh 

2 
( γ z ) 

∂ 2 v 1 
∂x 2 

− ρ11 cosh 

2 
( γ z ) 

∂ 2 v 1 
∂t 2 

= 4 πσ1 ( r, t ) (10) 

The force density σ 1 ( r, t ) are formed by a unit impulsive force in time and space which can be mathematically expressed

with the help of Dirac delta function at the point source as 

σ1 (r, t) = δ(x ) δ(z − H) e iωt (11) 

where ω is an angular frequency. 

For a shear wave travelling in the positive direction of x -axis, we may assume 

v 1 (x, z, t) = e iωt v 1 (x, z) (12) 

Substituting the Eqs. (11) and (12) in Eq. (10) , we have (
μ̄61 

μ̄41 

− P 11 

2 ̄μ41 

)
∂ 2 v 1 
∂ x 2 

+ 

∂ 2 v 1 
∂ z 2 

+ 

2 γ sinh (γ z) 

cosh (γ z) 

∂ v 1 
∂z 

+ 

ρ11 

μ̄41 

ω 

2 v 1 = 

4 πδ(x ) δ(z − H) 

μ̄41 cosh 

2 
(γ z) 

(13) 

where 

μ̄61 = μ11 
66 + iω η11 

66 and μ̄41 = μ11 
44 + iω η11 

44 

We use the following transformation to eliminate the term 

∂ v 1 
∂z 

in Eq. (13) 

v 1 (x, z) = V 1 (x, z) / cosh (γ z) (14) 
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Using the Eq. (14) in Eq. (13) , we have (
μ̄61 

μ̄41 

− P 11 

2 ̄μ41 

)
∂ 2 V 1 

∂ x 2 
+ 

∂ 2 V 1 

∂ z 2 
+ 

(
ρ11 

μ̄41 

ω 

2 − γ 2 
)

V 1 = 

4 πδ(x ) δ(z − H) 

μ̄41 cosh (γ z) 
(15)

Introduce the Fourier transform V̄ 1 (ξ , z) of V 1 ( x, z ) as 

V̄ 1 (ξ , z) = 

1 

2 π

∫ ∞ 

−∞ 

e iξx V 1 (x, z) dx 

and the inverse Fourier transform is 

V 1 (x, z) = 

∫ ∞ 

−∞ 

e −iξx V̄ 1 (ξ , z) dξ

Applying the Fourier transformation in Eq (15) , we have 

d 2 V̄ 1 

d z 2 
− κ2 

1 V̄ 1 = 4 πσ1 (z) (16)

where 

κ2 
1 = 

(
μ̄61 

μ̄41 

− P 11 

2 ̄μ41 

)
ξ 2 − λ2 

1 , λ2 
1 = 

(
ρ11 

μ̄41 

ω 

2 − γ 2 
)

(17)

and 

4 πσ1 (z) = 

2 δ(z − H) 

μ̄41 cosh (γ z) 
(18)

2.2. Solution for the lower substrate 

Similarly, the dynamic equation of SH-wave in Voigt-type viacoelastic orthotropic functionally graded half-space under

the initial stress is 

∂τ 2 
12 

∂x 
+ 

∂τ 2 
23 

∂x 
− P 2 

∂ w z 

∂x 
= ρ2 

∂ 2 v 2 
∂t 2 

(19)

By the means of Eqs. (1) and (6) , the equation of motion given by Eq. (19) becomes 

∂ 

∂x 

[{(
μ12 

66 + η12 
66 

∂ 

∂t 

)
+ 

(
1 + 

∂ 

∂t 

)
ε ( z − H ) 

2 

}
∂v 2 
∂x 

]
+ 

∂ 

∂z 

[{(
μ12 

44 + η12 
44 

∂ 

∂t 

)
+ 

(
1 + 

∂ 

∂t 

)
ε ( z − H ) 

2 

}
∂v 2 
∂z 

]
−
(

P 12 + ε ( z − H ) 
2 

2 

)
∂ 2 v 2 
∂x 2 

= 

(
ρ12 + ε ( z − H ) 

2 
)∂ 2 v 2 

∂t 2 
(20)

Now again assuming v 2 = v 2 (x, z) e iωt , we have (
μ̄62 

μ̄42 

− P 12 

2 ̄μ42 

)
∂ 2 v 2 
∂x 2 

+ 

∂ 2 v 2 
∂z 2 

+ 

ρ12 ω 

2 

μ̄42 

v 2 = 

−ε 

μ̄42 

[
( z − H ) 

2 
(

1 

2 

+ iω 

)
∂ 2 v 2 
∂x 2 

+ 2 ( z − H ) ( 1 + iω ) 
∂v 2 
∂z 

+ ( z − H ) 
2 
( 1 + iω ) 

∂ 2 v 2 
∂z 2 

+ ( z − H ) 
2 ω 

2 v 2 

]
(21)

where 

μ̄62 = μ12 
66 + iω η12 

66 and μ̄42 = μ12 
44 + iω η12 

44 

Now by using the Fourier transform in Eq. (21) , we obtain 

d 2 V̄ 2 

d z 2 
− κ2 

2 V̄ 2 = 4 πσ2 (z) (22)

where 

κ2 
2 = 

(
μ̄62 

μ̄42 

− P 12 

2 ̄μ42 

)
ξ 2 − λ2 

2 , λ2 
2 = 

ρ12 ω 

2 

μ̄42 

(23)

4 πσ2 (z) = 

−ε 

μ̄42 

[ 
(z − H) 2 (1 + iω) 

d 2 V̄ 2 

dz 2 
+ 2(z − H)(1 + iω) 

d ̄V 2 

dz 
− (z − H) 2 

{ 
ξ 2 
(

1 

2 

+ iω 

)
− ω 

2 
} 

V̄ 2 

] 
(24)
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3. Boundary conditions and frequency equation 

The stresses and displacements of the medium and substrate are continuous; and surface of the upper medium is traction

free, then the boundary conditions for considered model are hold as follows: 

d ̄V 1 

dz 
= 0 at z = 0 (25) 

V̄ 1 = V̄ 2 at z = H (26) 

μ̄41 cosh 

2 
(γ z) 

d ̄V 1 

dz 
= μ̄42 

d ̄V 2 

dz 
at z = H (27) 

With the aid of above boundary conditions (25) - (27) , we solve Eqs. (16) and (22) by Green’s function method. Let G 1 ( z / z 0 )

be the Green’s function for the viscoelastic orthotropic medium under the condition 

dG 1 

dz 
= 0 at z = 0 , H 

then the Eq. (16) must satisfy G 1 ( z / z 0 ) as 

d 2 G 1 (z/z 0 ) 

d z 2 
− κ2 

1 G 1 (z/z 0 ) = δ(z − z 0 ) (28) 

here, z 0 is a point in the bounded layer. 

Multiplying Eqs. (28) and (16) by V̄ 1 (z) and G 1 ( z / z 0 ), respectively, then subtracting and further integrating with respect

to z over 0 ≤ z ≤ H , we get 

G 1 (H/z 0 ) 
[ 

d ̄V 1 

dz 

] 
z= H = 

2 

μ̄41 cosh (γ H) 
G 1 (H/z 0 ) − V̄ 1 (z) (29) 

Replacing z 0 by z and applying the symmetry properties of Green’s function, we get from equation (29) as 

V̄ 1 (z) = 

2 

μ̄41 cosh (γ H) 
G 1 (z/H) − G 1 (z/H) 

[ 
d ̄V 1 

dz 

] 
z= H (30) 

Similarly, if G 2 ( z / z 0 ) be Green’s function associated with lower substrate, satisfying the equation 

d 2 G 2 (z/z 0 ) 

dz 2 
− κ2 

2 G 2 (z/z 0 ) = δ(z − z 0 ) (31) 

under the condition 

dG 2 

dz 
= 0 at z = H & z → ∞ 

In similar manner, we get 

V̄ 2 (z) = G 2 (z/H) 
[ 

d ̄V 2 

dz 

] 
z= H + 

∫ ∞ 

H 

4 πσ2 (z 0 ) G 2 (z/z 0 ) dz 0 (32) 

By means of the condition V̄ 1 (H) = V̄ 2 (H) , we obtain from Eqs. (30) and (32) 

2 

μ̄41 cosh ( γ H ) 
G 1 ( H/H ) − G 1 ( H/H ) 

[
d ̄V 1 

dz 

]
z= H 

= G 2 ( H/H ) 

[
d ̄V 2 

dz 

]
z= H 

+ 

∫ ∞ 

H 

4 πσ2 ( z 0 ) G 2 ( H/z 0 ) dz 0 (33) 

Applying the boundary condition (27) in Eq. (33) , we get 

[ 
d ̄V 1 

dz 

] 
z= H = 

(
2 / ( ̄μ41 cosh (γ H)) 

)
G 1 (H/H) 

G 1 (H/H) + 

μ̄41 cosh 
2 
(γ H) 

μ̄42 
G 2 (H/H) 

−
∫ ∞ 

H 4 πσ2 (z 0 ) G 2 (H/z 0 ) dz 0 

G 1 (H/H) + 

μ̄41 cosh 
2 
(γ H) 

μ̄42 
G 2 (H/H) 

(34) 

Similarly, we have 

[ 
d ̄V 2 

dz 

] 
z= H = 

(
2 / ( ̄μ41 cosh (γ H)) 

)
G 1 (H/H) 

G 2 (H/H) + 

μ̄42 

μ̄ cosh 
2 
(γ H) 

G 1 (H/H) 
−

∫ ∞ 

H 4 πσ2 (z 0 ) G 2 (H/z 0 ) dz 0 

G 2 (H/H) + 

μ̄42 

μ̄ cosh 
2 
(γ H) 

G 1 (H/H) 
(35) 
41 41 
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V

 

 

 

Putting the value of 
[

d ̄V 1 
dz 

]
z= H and 4 πσ 2 ( z 0 ) from Eqs. (34) and (24) into Eq. (30) respectively, we get 

V̄ 1 ( z ) = 

2 cosh ( γ H ) G 1 ( z/H ) G 2 ( H/H ) 

μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

− εG 1 ( z/H ) 

μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

×
∫ ∞ 

H 

[
( z 0 − H ) 

2 
( 1 + iω ) 

d 2 V̄ 2 

dz 2 
0 

+ 2 ( z 0 − H ) ( 1 + iω ) 
d ̄V 2 

dz 0 
− ( z 0 − H ) 

2 
{ 
ξ 2 
(

1 

2 

+ iω 

)
− ω 

2 
} 

V̄ 2 

]
G 2 ( H/z 0 ) dz 0 

(36)

Now, using Eqs. (35) and (24) in Eq. (32) , we have 

V̄ 2 ( z ) = 

2 cosh ( γ H ) G 1 ( H/H ) G 2 ( z/H ) 

μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

+ 

ε ̄μ41 cosh 

2 
( γ H ) G 2 ( z/H ) 

μ̄42 

[
μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

]
×
∫ ∞ 

H 

[
( z 0 − H ) 

2 
( 1 + iω ) 

d 2 V̄ 2 

dz 2 
0 

+ 2 ( z 0 − H ) ( 1 + iω ) 
d ̄V 2 

dz 0 
− ( z 0 − H ) 

2 
{ 
ξ 2 
(

1 

2 

+ iω 

)
− ω 

2 
} 

V̄ 2 

]
G 2 ( H/z 0 ) dz 0 

− ε 

μ̄42 

∫ ∞ 

H 

[
( z 0 − H ) 

2 
( 1 + iω ) 

d 2 V̄ 2 

dz 2 
0 

+ 2 ( z 0 − H ) ( 1 + iω ) 
d ̄V 2 

dz 0 
− ( z 0 − H ) 

2 
{ 
ξ 2 
(

1 

2 

+ iω 

)
− ω 

2 
} 

V̄ 2 

]
G 2 ( z/z 0 ) dz 0 

(37)

Applying first-order approxmation in Eq. (37) , we have 

V̄ 2 (z) = 

2 cosh (γ H) G 1 (H/H) G 2 (z/H) 

μ̄42 G 1 (H/H) + μ̄41 cosh 

2 
(γ H) G 2 (H/H) 

(38)

Eq. (38) gives the displacement for the orthotropic viscoelastic substrate, if it is considered as homogeneous. 

Substituting the value of V̄ 2 (z) in Eq. (36) , we obtained 

V̄ 1 ( z ) = 

2 cosh ( γ H ) G 1 ( z/H ) G 2 ( H/H ) 

μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

− 2 ε cosh ( γ H ) G 1 ( z/H ) G 1 ( H/H ) [
μ̄42 G 1 ( H/H ) + μ̄41 cosh 

2 
( γ H ) G 2 ( H/H ) 

]2 

×
∫ ∞ 

H 

⎡ ⎢ ⎣ 

( z 0 − H ) 
2 
( 1 + iω ) 

d 2 G 2 ( z 0 /H ) 

dz 2 
0 

+ 2 ( z 0 − H ) ( 1 + iω ) 
dG 2 ( z 0 /H ) 

dz 0 

−( z 0 − H ) 
2 
{ 
ξ 2 
(

1 

2 

+ iω 

)
− ω 

2 
} 

G 2 ( z 0 /H ) 

⎤ ⎥ ⎦ 

G 2 ( H/z 0 ) dz 0 

(39)

In order to find the elastic displacement V̄ 1 (z) associated with the upper layer influenced by a unit impulsive force, we need

to compute the value of G 2 ( z / H ) and G 1 ( z / H ). 

Constructing G 1 ( z / z 0 ) and G 2 ( z / z 0 ) from equations (28) and (31) , respectively, we have 

G 1 ( z/z 0 ) = − 1 

2 κ1 

[ 

e −κ1 | z−z 0 | + 

e κ1 z 
(
e −κ1 ( H+ z 0 ) + e −κ1 ( H−z 0 ) 

)
e κ1 H − e −κ1 H 

+ 

e −κ1 z 
(
e −κ1 ( H−z 0 ) + e −κ1 ( H−z 0 ) 

)
e κ1 H − e −κ1 H 

] 

(40)

and 

G 2 (z/z 0 ) = − 1 

2 κ2 

[ 
e −κ2 | z−z 0 | + e −κ2 (z+ z 0 −2 H) 

] 
(41)

Substituting Eqs. (40) and (41) in Eq. (39) , we have 

¯
 1 ( z ) = 

−2 cosh ( γ H ) ( e κ1 z + e −κ1 z ) 

E 1 + F 1 
×
[ 

1+ 

ε 
(
e κ1 H + e −κ1 H 

)
E 1 + F 1 

{(
2 ̄μ42 ( 1 + i 2 ω ) 

2 ̄μ62 − P 12 

− 1 

)
+ 

1 

κ2 
2 

(
2 ̄μ42 ( 1 + i 2 ω ) 

2 ̄μ62 − P 12 

λ2 
2 − 2 ω 

2 

)}] 

(42)

where 

E 1 = μ̄41 cosh 

2 
(γ H) κ1 

(
e κ1 H − e −κ1 H 

)
and F 1 = μ̄42 κ2 

(
e κ1 H + e −κ1 H 

)
Eq. (42) can be approximated if the higher powers of ε is neglected, 

V̄ 1 (z) = 

−2 cosh (γ H)(e κ1 z + e −κ1 z ) 

E 1 + F 1 − ε(e κ1 H + e −κ1 H ) 
{ (

2 ̄μ42 (1+ i 2 ω) 
2 ̄μ62 −P 12 

− 1 

)
+ 

1 
κ2 

2 

(
2 ̄μ42 (1+ i 2 ω) 

2 ̄μ62 −P 12 
λ2 

2 
− 2 ω 

2 

)} (43)

Taking inverse Fourier transform in Eq. (43) , we get 

V 1 (z) = −2 

∫ ∞ 

−∞ 

cosh (γ H)(e κ1 z + e −κ1 z ) e −iξx dξ

E 1 + F 1 − ε(e κ1 H + e −κ1 H ) 
{ (

2 ̄μ42 (1+ i 2 ω) 
2 ̄μ62 −P 12 

− 1 

)
+ 

1 
κ2 

2 

(
2 ̄μ42 (1+ i 2 ω) 

2 ̄μ62 −P 12 
λ2 

2 
− 2 ω 

2 

)} (44)
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Using Eq. (14) into Eq. (44) , we have 

v 1 (z) = −2 

∫ ∞ 

−∞ 

( cosh (γ H) / cosh (γ z))(e κ1 z + e −κ1 z ) e −iξx dξ

E 1 + F 1 − ε(e κ1 H + e −κ1 H ) 
{ (

2 ̄μ42 (1+ i 2 ω) 
2 ̄μ62 −P 12 

− 1 

)
+ 

1 
κ2 

2 

(
2 ̄μ42 (1+ i 2 ω) 

2 ̄μ62 −P 12 
λ2 

2 
− 2 ω 

2 

)} (45) 

To get the frequency equation of shear wave, we have to make the denominator of above equation (45) to be zero 

E 1 + F 1 − ε(e κ1 H + e −κ1 H ) 
{ (

2 ̄μ42 (1 + i 2 ω) 

2 ̄μ62 − P 12 

− 1 

)
+ 

1 

m 

2 
2 

(
2 ̄μ42 (1 + i 2 ω) 

2 ̄μ62 − P 12 

λ2 
2 − 2 ω 

2 
)} 

= 0 (46)

After replacing ξ by k in Eq. (46) , we have 

�( k 1 , c ) = tanh ( H κ1 ) + 

2 κ2 μ̄42 + 2 ε 
(

1 + 

2 ω 2 

κ2 
2 

+ 

2 ( κ2 
2 + λ2 

2 ) ̄μ42 ( 1+2 iω ) 

κ2 
2 ( P 12 −2 ̄μ62 ) 

)
2 κ1 μ̄41 cosh 

2 
(γ H) 

= 0 (47) 

Eq. (47) represents the wave-velocity equation of SH-waves in pre-stressed orthotropic viscoelastic FGM layer overlying pre-

stressed orthotropic viscoelastic FGM substrate under the influence of point source. 

4. Particular cases and validation 

Case 4.1: Homogeneous orthotropic viscoelastic FGM medium over homogeneous orthotropic viscoelastic FGM half-space 

when in the assumed layered structure both medium and substrate is considered to be homogeneous with stress free i.e.

γ → 0, ε → 0, P 11 → 0, P 12 → 0, then Eq. (47) reduces to 

tan 

( 

k 1 H 

√ 

c 2 ρ11 

μ11 
44 

+ iω η11 
44 

− μ11 
66 

+ iω η11 
66 

μ11 
44 

+ iω η11 
44 

) 

= 

(μ12 
44 + iω η12 

44 ) 

√ 

μ12 
66 

+ iω η12 
66 

μ12 
44 

+ iω η12 
44 

− c 2 ρ11 

μ12 
44 

+ iω η12 
44 

(μ11 
44 

+ iω η11 
44 

) 

√ 

c 2 ρ11 

μ11 
44 

+ iω η11 
44 

− μ11 
66 

+ iω η11 
66 

μ11 
44 

+ iω η11 
44 

(48) 

Eq. (48) is the dispersion equation for SH-waves propagation in homogeneous orthotropic viscoelastic medium lying over

homogeneous orthotropic viscoelastic substrate. 

Case 4.2: Orthotropic medium over orthotropic substrate 

when in the assumed layered structure both medium and substrate is considered to be viscous free i.e η11 
i j 

→ 0 , η12 
i j 

→ 0 ,

then Eq. (48) transforms to 

tan 

( 

k 1 H 

√ 

c 2 ρ11 

μ11 
44 

− μ11 
66 

μ11 
44 

) 

= 

μ12 
44 

√ 

μ12 
66 

μ12 
44 

− c 2 ρ11 

μ12 
44 

μ11 
44 

√ 

c 2 ρ11 

μ11 
44 

− μ11 
66 

μ11 
44 

(49) 

Eq. (49) is the dispersion equation for SH-waves propagation in orthotropic medium lying over orthotropic half-space. 

Case 4.3: Isotropic medium over homogeneous half-space 

when in the assumed layered structure both medium and half-space is considered to be isotropic elastic medium with

rigidity μ1 (i.e. μ11 
44 → μ11 

66 → μ1 ) associated with the layer and μ2 (i.e. μ12 
44 → μ12 

66 → μ2 ) associated with the half-space,

then Eq. (49) converts to 

tan 

(
k 1 H 

√ 

c 2 

β2 
1 

− 1 

)
= 

μ2 

√ 

1 − c 2 

β2 
2 

μ1 

√ 

c 2 

β2 
1 

− 1 

(50) 

where 

β1 = 

√ 

μ1 

ρ1 

and β2 = 

√ 

μ2 

ρ2 

Eq. (50) represents the well-known pre-established classical relation of Love wave in an isotropic layer lying over homoge-

neous half-space, which coincides the results obtained by Ewing [1] and Love [2] . 

5. Graphical observation and discussions 

Graphical observation based on the obtained results in the form of wave-velocity Eq. (47) are provided to demonstrate

the influence of heterogeneity and viscoelasticity associated with the medium and substrate in the both presence and ab-

sence of initial stress on phase velocity ( c / β ) and attenuation coefficient ( Log ( δ)) by taking into account the Re [ �( k , c )]
1 1 
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Fig. 2. Variations of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H for different values of viscoelasticity v = 

ω η11 
44 /μ

11 
44 of the layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Im [ �( k 1 , c )] respectively. The parameters v = ω η11 
44 

/μ11 
44 

and 

˜ v = ω η12 
44 

/μ12 
44 

are denoting the non-dimensional viscoelas-

ticity of the upper layer and half-space respectively. Likewise, the parameters γ / k 1 and ε/ (k 1 μ
12 
44 

) are denoting the non-

dimensional heterogeneity of the upper layer and half-space, respectively. We have taken the following data for numerical

work from Yu et al. [30] : 

For viscoelastic functionally graded (FGM) bounded layer: 

μ11 
44 = 7 . 8 GPa , μ11 

66 = 3 . 9 GPa , η11 
44 = 0 . 0042 GPa ms , η11 

66 = 0 . 0034 GPa ms , ρ1 = 1 . 595 g / c m 

3 

For viscoelastic functionally graded (FGM) lower half-space: 

μ12 
44 = 6 . 15 GPa , μ12 

66 = 3 . 32 GPa , η12 
44 = 0 . 02 GPa ms , η12 

66 = 0 . 009 GPa ms , ρ2 = 1 . 5 g / c m 

3 

The Wolfram Mathematica 9.0 software has been used for computational work and acquired results are depicted graph-

ically. In the under mentioned figures, non-dimensional wave number k 1 H represents the horizontal axis, whereas a non-

dimensional attenuation coefficient Log ( δ) and phase velocity c / β1 represent the vertical axis. In each of the figure, first

subfigure (a) delineates the impact of influencing parameters on the phase velocity of SH-wave while the second subfigure

(b) stand for the influence of same on the attenuation coefficient. The solid line curves (Curves 1, 2, and 3) in each of the

subfigures illustrate the case when medium is under the influence of initial stress, while the dashed line curves (Curves 4,

5, 6) in the subfigures represent the case of absence of initial stress. The detailed discussions on figures are as follows: 

5.1. Effect of viscoelasticity on phase velocity and attenuation coefficient 

Fig. 2 (a) and (b) exhibit the influence of viscoelasticity ( v ) associated with the upper medium on the phase velocity

and attenuation coefficient against dimensionless wave number respectively. Different values of viscoelastic parameter ( v )

are taken into consideration to study its influence on attenuation as well as phase velocity are as 0.00, 0.35, 0.70. Curves

1 and 4 of these figures represent that the bounded medium is viscous free (i.e., v = 0 ). Following observations and effects

are marked as: 

• The phase velocity of SH-wave gets discouraged with the rising value of wave number. However, the attenuation coeffi-

cient gets encouraged dramatically k 1 H ≤ 0.7, decreases monotonically for the wave number k 1 H ≤ 1.2, again increases

and at last follow a constant trend for the higher values of wave number. The same influence of wave number on atten-

uation coefficient as well as phase velocity are reported for the case of both the presence and absence of initial stresses.

• Both attenuation coefficient and phase velocity of SH-wave get encouraged due to each rise in the mentioned value of

viscoelastic parameter ( v ). In addition to that, the attenuation as well as phase velocity of SH-wave are minimum when

the viscoelasticity is absent with initial stress in upper medium and are maximum when the viscoelasticity is present

without initial stress. 

• Both phase velocity and attenuation curves are much closer in the lower region of wave number as compared to the

higher region of wave number for various values of viscoelasticity which suggests that the presence of viscoelasticity in
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Fig. 3. Variations of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H for different values of viscoelasticity ˜ v = 

ω η12 
44 /μ

12 
44 of the half-space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the upper layer has most prominent influence in the higher range of wave number and a little influence in lower range

of wave number for the case of presence and absence of initial stress. 

The phase velocity and attenuation coefficient are plotted against dimensionless wave number for various values of

viscoelasticity ( ̃  v ) associated with substrate in Fig. 3 (a) and (b) respectively. To serve the purpose, values of viscoelas-

tic parameter ˜ v are taken as 0.00, 0.45, 0.90. Curves 1 and 4 explain the lower half-space is viscous free (i.e., ˜ v = 0 ).

Following observations can be noted from these figures: 

• The phase velocity curves follow a same trend with respect to increasing value of wave number for the mentioned values

of ̃  v as it is observed for different prescribed values of v . However, it also can be noted that attenuation coefficient for

the rising wave number also follow the same trend as for the v . More accurately, the attenuation coefficient increases for

the wave number k 1 H ≤ 0.9, thereafter it decreases monotonically for a while k 1 H ≤ 1.5, again increases slightly for the

wave number k 1 H ≤ 2 and become constant after a small decrement. These trends are observed for the presence and

absence of initial stress in the considered medium. 

• A disfavouring behaviour on the phase velocity is marked for the mounting value of viscoelastic parameter ( ̃  v ). On the

contrary to this, the increase in viscoelastic parameter ̃  v discourages the attenuation coefficient of SH-wave for the wave

number k 1 H ≤ 1.8 (in the presence of initial stress) and wave number k 1 H ≤ 1.6 (in the absence of initial stress). How-

ever, the nature of the curves get reversed for wave number k 1 H ≥ 1.8 and k 1 H ≥ 1.6 in the presence and absence of

initial stress, respectively. 

• Apart from that, the influence of the viscoelastic parameter on the attenuation as well as phase velocity are more in the

absence of initial stress than in the presence of initial stress. 

Surface plots in Fig. 4 (a) and (b) elucidate on the combined variation of phase velocity and attenuation coefficient

respectively, with respect to wave number; and viscoelasticity of bounded medium for the traversal of seismic shear

waves in viscoelastic orthotropic FGM composite layered structure with initial stress. When the fixed values of ̃  v , γ / k 1 
and ε/ ( k 1 μ

12 
44 

) are contracted as 0.4, 0.3 and 0.6. Similarly Fig. 5 (a) and (b) show the joint variation of phase velocity

and attenuation coefficient respectively, with respect to wave number; and viscoelasticity of lower substrate. 

5.2. Effect of heterogeneities on phase velocity and attenuation coefficient 

Fig. 6 (a) and (b) elucidate the variation of phase velocity profile and attenuation with respect to wave number for

various distinct values of heterogeneity parameter γ / k 1 associated with the layer as 0, 0.3 and 0.6. In both figures, curves 1

and 4 represent the case when there is no heterogeneity present in the layer (i.e., γ /k 1 = 0 ). The remarks drawn from the

two figures are as follows: 

• A monotonic decrease in the phase velocity with respect to increase in wave number is observed while a sharp increase

in the attenuation coefficient for the wave number k H ≤ 0.7 is manifested, then a decreasing behaviour of attenua-
1 
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Fig. 4. Surface plots showing combined variation of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H and viscoelas- 

ticity v = ω η11 
44 /μ

11 
44 of the layer. 

Fig. 5. Surface plots showing combined variation of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H and viscoelas- 

ticity ˜ v = ω η12 
44 /μ

12 
44 of the half-space. 

 

 

 

 

 

 

 

 

tion coefficient is noticed for the higher range of wave number which is followed by a slight decrease due to further

increment in the wave number. The trend is same for the case of both the presence and absence of initial stress. 

• The heterogeneity associated with the upper medium favours both attenuation coefficient and phase velocity. However,

more significant effect of heterogeneity parameter on attenuation coefficient is observed to be in the higher values of

wave number as compared to that of the lower values of wave number. But, the influence of heterogeneity parameter is

found to be uniform for the complete range of wave number. 

• The curves in both the figures recommend that both the attenuation coefficient and phase velocity are minimum when

there is no heterogeneity associated with upper layer in the presence of initial stress and are maximum when there is

heterogeneity associated with upper layer in the absence of initial stress. 

In order to show the influence of heterogeneity parameter ε/ ( k 1 μ
12 
44 

) associated with the lower half-space, Fig. 7 (a)

and (b) is portrayed. The values of ε/ ( k 1 μ
12 ) have been considered as 0, 0.3 and 0.6. Curves 1 and 4 of both the figures

44 
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Fig. 6. Variations of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H for different values of heterogeneity parameter 

γ / k 1 of the layer. 

Fig. 7. Variations of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H for different values of heterogeneity parameter 

ε/ ( k 1 μ12 
44 ) of the half-space. 

 

 

 

 

 

 

 

represent the case when there is no heterogeneity present in the lower half-space (i.e., ε/ ( k 1 μ
12 
44 ) = 0 ). The noticeable

observations of these figures are as follows: 

• A similar nature of the phase velocity and attenuation coefficient with respect to wave number for distinct values of

heterogeneity parameter ε/ ( k 1 μ
12 
44 ) associated with the lower half-space is found as it is marked for the mentioned

values γ / k 1 . 

• The heterogeneity present in the lower half-space diminishes the phase velocity for the entire range of wave number. A

sharp increment in the attenuation coefficient is observed as we gradually increase the value of wave number and after

that a slight downfall is perceived in the attenuation due to further increment in the values of wave number. Finally a

slight enhancement and thereafter a steady nature in the pattern of attenuation coefficient is noticed with the increment

of the higher range of wave number. 
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Fig. 8. Surface plots showing combined variation of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H and hetero- 

geneity γ / k 1 of the layer. 

Fig. 9. Surface plots showing combined variation of (a) phase velocity c / β1 and (b) attenuation coefficient Log ( δ) against wave number k 1 H and hetero- 

geneity ε/ ( k 1 μ12 
44 ) of the half-space. 

 

 

 

 

 

 

 

 

 

 

• From both the figures, we perceive that the attenuation of shear wave is minimum for that case when the lower half-

space is homogeneous with initial stress while the phase velocity is same when the lower half-space is heterogeneity

with initial stress. 

The combined variation of phase velocity; and wave number against heterogeneity of the bounded medium and lower

substrate are focused by means of surface plots in Figs. 8 (a) and 9 (a), when the seismic shear wave passes through

viscoelastic orthotropic FGM composite layered structure with initial stress. However, Figs. 8 (b) and 9 (b) trace out the

joint effect of attenuation coefficient; and wave number with respect to heterogeneity of the medium and substrate. 

6. Conclusions 

In this study, the traversal behaviour of SH-wave influenced by an impulsive point source in an orthotropic viscoelastic

FGM medium lying over an orthotropic viscoelastic FGM substrate has been examined. With the aid of mathematical tools

viz. Green’s function and Fourier transform, complex form of velocity equation has been achieved in compact form. The

obtained results are numerically computed using numerical data and are illustrated graphically. A prominent effect of the

affecting parameters on the traversal behaviour of SH-wave has been reported. Moreover, the comparative study has been
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accomplished in order to examine the influence of affecting parameters on the traversal behaviour of SH-wave for the

presence and absence of initial stress in the considered media. Following are the major outcomes of the present study

under assumed conditions: 

• It is established that the phase velocity of SH-wave gets disfavoured with the growing wave number while the atten-

uation coefficient gets favoured initially with the increase in wave number followed by a disfavouring behaviour (for a

small range of wave number) and become constant thereafter throughout the entire range of wave number. 

• The viscoelasticity associated with the upper medium favours attenuation coefficient as well as phase velocity of seismic

shear wave in a significant manner for the both the cases of presence and absence of initial stresses in the media.

More accurately, the attenuation coefficient gets much substantially influenced due to viscoelasticity acting in the upper

medium for the wave number ( k 1 H 1 ≥ 0.5). 

• The viscoelasticity associated with substrate favours phase velocity of seismic shear wave in the entire region of wave

number. However, the presence of viscoelasticity in the lower substrate encourages the attenuation coefficient in the

lower range of wave number, thereafter its effect become negligible on the attenuation coefficient for the higher wave

number ( k 1 H 1 ≥ 2). The influence of viscoelasticity on attenuation coefficient as well as phase velocity are same for the

presence and absence of initial stress. 

• The heterogeneity parameter associated with the upper medium has significant encouraging influence on the phase ve-

locity of SH-wave in complete range of wave number. On contrary, attenuation coefficient of SH wave gets significantly

favoured due to viscoelasticity associated with the upper medium in the higher region of wave number as compared to

that of lower region of wave number. 

• Phase velocity of SH-wave diminishes with rising value of heterogeneity parameter contained in the half-space while the

attenuation coefficient increases. The minute study of the figures reveal that the phase velocity is discouraged consider-

ably in the complete range of wave number, while the attenuation coefficient gets significantly disfavoured for the wave

number ( k 1 H 1 ≤ 2). The attenuation curves for different values of ε/ ( k 1 μ
12 
44 ) is coincident for the higher values of wave

number. 

• It is worth mentioning that phase velocity as well as attenuation coefficient of SH-wave are comparatively more for the

case when there is no initial stress acting in the upper and lower media than that for the case when initial stress is

acting in both the media. 

Observations made in the present theoretical framework may suggest a significant contribution to the problems of wave

propagation, vibration and geophysical surveys through the Earth layered model with different material properties. More-

over, this result can be used as the first initial information for exploring the underground formations. 
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