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Abstract The present investigation deals with the mathematical modelling and analytical thinking to uncover
the various facets of the propagation of Rayleigh waves in an Earth’s crustal layer. This work has been carried
out when the wave is passing through a pre-stressed anisotropic layer of finite thickness, lying over a semi-
infinite medium with void pores. The upper boundary plane of the crustal layer has been thought to be a free
surface. Displacement components of the wave for both the media have been derived analytically. Appropriate
boundary conditions have been well satisfied with the aid of displacement and stress factors in order to get the
desired dispersion relation.A comparative study has been performed graphically taking anisotropic, orthotropic
and isotropic strata, in order to show the impact of initial stress and thickness on the propagation characteristics
of Rayleigh waves. The present work may establish a program to connect theoretical results with subject area
applications.

1 Introduction

Ever since the existence of Rayleigh waves was predicted by the British physicist Lord Rayleigh [1], surface
waves have been extensively devoted as a dynamic observation paraphernalia in many disciplines, such as
solid physics, seismology, geophysics, geotechnical engineering, and many more. The prime motive of all
applications in these orbits is to find out media or material properties inside a certain range near the surface
where surface waves propagate. Rayleigh waves are very much helpful not just in terms of characterization of
materials, but also to uncover the mechanical and structural properties of the object being examined. Rayleigh
waves are those surface acoustic waves that travel on solids and are part of the seismic waves that are brought
forth in the Earth by earthquakes. They are likewise known as Lamb waves, generalized Rayleigh waves or
Rayleigh–Lamb waves, when guided in layers. Rayleigh waves produced during earthquakes possessing low
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frequency are widely applied to characterize the Earth’s interior, whereas those in the medium-frequency range
are beneficial for the delineation of oil deposits.

Remarkable amount of data about the propagation of elastic waves in layered media have been extensively
summarized in the books of Ewing et al. [2], Brekhovskikh [3], and Kennet [4]. The subject of seismic wave
propagation has been extended to layered anisotropic media by Nayfeh [5]. Furthermore, the analysis of
Rayleigh waves has been recorded remarkably in several treatises, including Achenbach [6] and Pilant [7].
In the year 1985, Bullen and Bolt [8] introduced the theory of seismology giving detailed information about
seismic waves and their generation in different media possessing different characteristics.

Anisotropy is a directionally dependent property of amediumwhich brieflymeans varying properties along
varying directions. Particularly, the dependence of seismic wave velocity on direction or upon angle is known
as seismic anisotropy. In the Earth’s crust, mantle, and inner core, significant seismic anisotropy has been
discovered. Important facts and information regarding processes and mineralogy in the Earth can be easily
assessed bymeasuring the effects of anisotropy in seismic data. Due to these applications in various fields, wave
propagation in anisotropicmedia has constantly been a cynosure to researchers, scientists, andmathematicians.
Synge [9] illustrated the propagation of elastic waves in anisotropic media, whereas Dutta [10] studied the
Rayleigh wave propagation considering two layered anisotropic media. Furthermore, Sharma and Gogna [11]
contributed their ideas onwave propagation in anisotropic liquid-saturated porous solids. Aworldwide problem
of elastic wave propagation taking multilayered anisotropic media into account has been remarkably discussed
by Nayfeh [12]. Moreover, Vinh and Hue [13] demonstrated the impact of impedance boundary conditions in
anisotropic solids on the propagation of Rayleigh waves. In the late years, the dispersion of Rayleigh waves in
weakly anisotropic media with vertically inhomogeneous initial stress has been investigated by Tanuma et al.
[14]. On the other hand, Pal et al. [15] briefly examined the propagation of Rayleigh waves in an anisotropic
layer overlying a semi-infinite sandy medium.

Initial stress can be easily delineated as a particular stress, which persists in an elastic consistency, although
external forces are unavailable, and hence, the body is said to be initially stressed. Moreover, initial stresses
can be engendered in the medium because of both natural and artificial procedures. The evolution of initial
stress is due to various reasons, for example, the variation of temperature, presence of overburdened layer,
gravity variation, atmospheric pressure, and many more. These stresses possess pronounced impact not only
on the propagation of seismic waves, but also on the stability of the medium. Earth may be looked at as a
stratified medium under initial stress. Hence, it is of vast area of interest to examine the issue of these stresses
on the propagation of Rayleigh waves. The governing equations of motion for a pre-stressed elastic medium
have been introduced by Biot [16] in order to find out the impact of initial stresses on the propagation of elastic
waves. It clearly elucidates that there exists a vast difference between the wave propagation under initial stress
and the stress-free case. Chattopadhyay et al. [17] gave a brief mathematical overview on the propagation of
Rayleigh waves in a pre-stressed medium. An extensive discussion regarding the reflection phenomenon of
qP and qSV waves in a pre-stressed piezoelectric half-space has been provided by Singh [18]. Abd-Alla et al.
[19] studied the traversal characteristics of Rayleigh waves in a generalized magneto-thermoelastic orthotropic
material under initial stress and gravity field. Furthermore, Sharma andGupta [20] analysed the impact of initial
stress on the characteristics of Rayleigh wave propagation. The subject area of Rayleigh waves propagating
in a magneto-electro-elastic half-space with initial stress has been discussed remarkably by Zhang et al. [21].
The influence of initial stress is prominent not only on Rayleigh waves, but also on other seismic waves as
well. Recently, Pandit et al. [22] illustrated the effect of initial stress on the propagation of Love waves in a
Voigt-type viscoelastic orthotropic functionally graded layer lying over a porous half-space.

A number of problems connected with the wave propagation in a medium containing void or vacuous pores
have attracted eminent researchers round the Earth. In the beginning, Nunziato and Cowin [23] developed a
nonlinear theory of flexible material with voids. A few years later, after the conception of this hypothesis, the
one-dimensional theory of flexible materials with voids has also been introduced by Cowin and Nunziato [24].
Chandrasekharaiah [25] addressed the characteristics of Rayleigh–Lamb waves in an elastic plate with voids.
Likewise, the subject area of wave propagation in a micropolar elastic plate with voids has been investigated by
Tomar [26]. Further, Iesan [27] gave a briefmathematical discussion of a theory of thermoviscoelasticmaterials
with voids, whereas a problem on plane waves in a rotating generalized thermoelastic solid with voids has
been discussed by Singh and Tomar [28]. Recently, Vishwakarma and Gupta [29] performed a case-wise study
on the Rayleigh wave propagation under the effect of a rigid boundary. In their study, two cases have been
discussed, out of which in case II the lower medium has been counted as a half-space with void pores.

This research study is fundamentally concerned with the real impact of thickness and initial stress on the
propagation of Rayleigh waves through an anisotropic crustal layer lying over a half-space with void pores.
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Fig. 1 Structure of the model

The displacement components have been deduced separately for both layer and half-space using governing
equations of motion. With the assistance of the displacement components and suitable boundary conditions,
the dispersion relation has been derived mathematically. The considerable influence of thickness and initial
stress has been illustrated graphically not only for phase velocity, but also for attenuation of Rayleigh wave
propagation by providing numerical values for different parameters.

2 Mathematical formulation of the problem

Wehave considered an anisotropic elastic layer of finite thickness h under horizontal initial stress P overlying a
semi-infinite elastic half-space with void pores.We have also assumed that the x-axis is in the direction of wave
propagation, i.e. along the horizontal direction with velocity c, and the z-axis is pointed vertically downwards.
The free surface and interface between these two media are located at z = −h and z = 0, respectively. ρ1
is the density of the layer, whereas in case of half-space, rigidity and density are μ2 and ρ2, respectively.
The complete geometrical layout of the problem is shown in Fig. 1. For Rayleigh waves, displacement is
independent of y, and if (u, v, w) is the displacement at any point P1(x, y, z) in the medium, then v = 0 and
u, w are functions of x, z, and t .

3 Fundamental equations and solution

3.1 Dynamics of the layer

For the propagation of Rayleigh waves in an anisotropic elastic layer under initial stress P , the governing
equations given by Biot [30] are

∂τ
(1)
xx

∂x
+ ∂τ

(1)
xz

∂z
− P

∂ωxz

∂z
= ρ1

∂2u1
∂t2

(3.1)

and
∂τ

(1)
xz

∂x
+ ∂τ

(1)
zz

∂z
− P

∂ωxz

∂x
= ρ1

∂2w1

∂t2
(3.2)

where τ
(1)
xx , τ

(1)
zz , and τ

(1)
xz are the shearing stress components, u1(x, z, t) and w1(x, z, t) are the factors of

displacement in the layer along x and z directions, respectively, and ωxz is the rotational component defined
by

ωxz = 1

2

(
∂u1
∂z

− ∂w1

∂x

)
. (3.3)

The stress–strain relations for the anisotropic layer given by Biot [30] are

τ (1)
xx = μ11exx + μ12eyy + μ13ezz + 2μ14eyz + 2μ15exz + 2μ16exy,

τ (1)
zz = μ31exx + μ32eyy + μ33ezz + 2μ34eyz + 2μ35exz + 2μ36exy, (3.4)
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and τ (1)
xz = μ51exx + μ52eyy + μ53ezz + 2μ54eyz + 2μ55exz + 2μ56exy

whereμi j (i = 1, 3, 5 ; j = 1, 2, . . . , 6) are the elastic constants and ei j are the incremental strain components
defined by

exx = ∂u1
∂x

, ezz = ∂w1

∂z
, exz = 1

2

(
∂u1
∂z

+ ∂w1

∂x

)
and exy = eyy = eyz = 0. (3.5)

With the help of set of relations (3.3), (3.4), and (3.5), the equations of motion (3.1) and (3.2) expand to

μ11
∂2u1
∂x2

+ μ15
∂2w1

∂x2
+

(
μ55 − P

2

)
∂2u1
∂z2

+ μ35
∂2w1

∂z2

+ 2μ15
∂2u1
∂x∂z

+
(

μ13 + μ55 + P

2

)
∂2w1

∂x∂z
= ρ1

∂2u1
∂t2

, (3.6)

and μ15
∂2u1
∂x2

+
(

μ55 + P

2

)
∂2w1

∂x2
+ μ35

∂2u1
∂z2

+ μ33
∂2w1

∂z2

+
(

μ13 + μ55 − P

2

)
∂2u1
∂x∂z

+ 2μ35
∂2w1

∂x∂z
= ρ1

∂2w1

∂t2
. (3.7)

Let the solutions to Eqs. (3.6) and (3.7) be u1(x, z, t) = F1(z)eik(x−ct) and w1(x, z, t) = G1(z)eik(x−ct),
respectively. Using these values, in Eqs. (3.6) and (3.7), we obtain

[(
μ55 − P

2

)
D2 + 2ikμ15D + (

ρ1k
2c2 − μ11k

2)] F1

+
[
μ35D

2 + ik

(
μ13 + μ55 + P

2

)
D − μ15k

2
]
G1 = 0 (3.8)

and

[
μ35D

2 + ik

(
μ13 + μ55 − P

2

)
D − μ15k

2
]
F1

+
[
μ33D

2 + 2ikμ35D +
(

ρ1k
2c2 − k2

(
μ55 + P

2

))]
G1 = 0 (3.9)

where D = ∂
∂z , D2 = ∂2

∂z2
, k is the wave number, and c is the phase velocity.

Let us consider F1(z) = Me−ksz and G1(z) = Ne−ksz , where M and N are arbitrary constants.
In order to resolve the above system of simultaneous linear equations with constant coefficients, we sub-

stitute F1(z) and G1(z) in Eqs. (3.8) and (3.9), and then the equations get reduced to
[(

μ55 − P

2

)
s2 − 2iμ15s+

(
ρ1c

2 − μ11
)]

M+
[
μ35s

2 − i

(
μ13+μ55+ P

2

)
s−μ15

]
N =0

(3.10)

and

[
μ35s

2 − i

(
μ13 + μ55 − P

2

)
s − μ15

]
M +

[
μ33s

2 − 2iμ35s +
(

ρ1c
2 −

(
μ55 + P

2

))]
N = 0.

(3.11)

For getting the nontrivial solution of Eqs. (3.10) and (3.11), we may write
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = 0 (3.12)

where a11, a12, a21, and a22 are defined in “Appendix I”.
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Solving the determinant given in (3.12), we get a polynomial equation in s with degree 4 as

a0s
4 + a1s

3 + a2s
2 + a3s + a4 = 0 (3.13)

where a0, a1, a2, a3, and a4 are defined in “Appendix I”.
Suppose si (i = 1, . . . , 4) are the roots of Eq. (3.13) and from Eq. (3.10) corresponding to s = si , the

ratio of the displacement components F1i and G1i is given by

G1i

F1i
= Ni

Mi
= −

[(
μ55 − P

2

)
s2i − 2iμ15si + (

ρ1c2 − μ11
)]

[
μ35s2i − i

(
μ13 + μ55 + P

2

)
si − μ15

] = ni (3.14)

where ni , Mi , and Ni are arbitrary constants.
Finally, the desired solutions of Eqs. (3.6) and (3.7) can be written as

u1(x, z, t) =
(
M1e

−ks1z + M2e
−ks2z + M3e

−ks3z + M4e
−ks4z

)
eik(x−ct) (3.15)

and w1(x, z, t) =
(
n1M1e

−ks1z + n2M2e
−ks2z + n3M3e

−ks3z + n4M4e
−ks4z

)
eik(x−ct). (3.16)

3.2 Dynamics of the half-space

In the absence of body forces, the governing equations of motion for the homogeneous elastic half-space with
void pores given by Cowin and Nunziato [24] are

μ2

(
∂2u2
∂x2

+ ∂2u2
∂z2

)
+ (λ2 + μ2)

(
∂2u2
∂x2

+ ∂2w2

∂x∂z

)
+ β

∂φ

∂x
= ρ2

∂2u2
∂t2

, (3.17)

μ2

(
∂2w2

∂x2
+ ∂2w2

∂z2

)
+ (λ2 + μ2)

(
∂2w2

∂z2
+ ∂2u2

∂x∂z

)
+ β

∂φ

∂z
= ρ2

∂2w2

∂t2
, (3.18)

and ᾱ

(
∂2φ

∂x2
+ ∂2φ

∂z2

)
− ω̄

∂φ

∂t
− ξφ − β

(
∂u2
∂x

+ ∂w2

∂z

)
= ρ2k̄

∂2φ

∂t2
(3.19)

where u2(x, z, t) and w2(x, z, t) are components of displacement along x and z directions, respectively. λ2
is Lame’s constant. The change between volume fraction and reference volume fraction is denoted by φ. The
void parameters are ᾱ , ω̄ , ξ , β, and k̄.

For the elastic half-space with void pores, the stress–displacement relations given by Weiskopf [31] are

τ (2)
xz = μ2

(
∂w2

∂x
+ ∂u2

∂z

)
and τ (2)

zz = λ2
∂u2
∂x

+ (λ2 + 2μ2)
∂w2

∂z
(3.20)

where τ
(2)
xz and τ

(2)
zz are the shearing stress components.

Now, let us consider

u2 = ∂L

∂x
− ∂Q

∂z
and w2 = ∂L

∂z
+ ∂Q

∂x
. (3.21)

Using (3.21), Eqs. (3.17) and (3.18) get reduced to

∂2L

∂x2
+ ∂2L

∂z2
− 1

α1
2

∂2L

∂t2
= β̄1φ (3.22)

and
∂2Q

∂x2
+ ∂2Q

∂z2
− 1

α2
2

∂2Q

∂t2
= 0 (3.23)

where α1, β̄1, and α2 are defined in “Appendix I”.
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For the propagation of the wave in the positive direction of the x-axis with velocity c, the solutions of Eqs.
(3.19), (3.22), and (3.23) are

φ(x, z, t) = φ̄(z)eik(x−ct), (3.24)

L(x, z, t) = φ0(z)e
ik(x−ct), (3.25)

and Q(x, z, t) = ψ0(z)e
ik(x−ct), respectively. (3.26)

Substituting Eqs. (3.24) and (3.25) in Eqs. (3.19) and (3.22), we get

ᾱ
d2φ̄

dz2
+ φ̄(iω̄kc − k2ᾱ − ξ + ρ2k̄k

2c2) − β
d2φ0

dz2
+ βk2φ0 = 0 (3.27)

and
d2φ0

dz2
− k2ā2φ0 = β̄1φ̄ (3.28)

where ā is defined in “Appendix I”.
In direction of starting out the results of Eqs. (3.27) and (3.28), let us assume

φ0(z) = Ae−pz + Bepz

and φ̄(z) = Ce−pz + Depz

where A, B, C , and D are arbitrary constants.
Replacing the values of φ0(z) and φ̄(z), Eqs. (3.27) and (3.28) get transformed into the set of simultaneous

equations

(p2 − k2ā2)A − β̄1C = 0, (3.29)

(p2 − k2ā2)B − β̄1D = 0, (3.30)

(βk2 − βp2)A + (ᾱ p2 + iω̄kc − k2ᾱ − ξ + ρ1k̄k
2c2)C = 0, (3.31)

and (βk2 − βp2)B + (ᾱ p2 + iω̄kc − k2ᾱ − ξ + ρ1k̄k
2c2)D = 0. (3.32)

For getting a nontrivial solution of Eqs. (3.29) , (3.30) , (3.31), and (3.32), we may write

∣∣∣∣∣∣∣
b11 0 b13 0
0 b11 0 b13
b31 0 b33 0
0 b31 0 b33

∣∣∣∣∣∣∣
= 0 (3.33)

where b11, b13, b31, and b33 are defined in “Appendix I”.
On expanding and solving the determinant given in (3.33), we get a polynomial equation in p with degree

4, with four distinct roots, namely

p1 = ±
√

ξ1 −
√

η1 − γ1

q1
(3.34)

and p2 = ±
√

ξ1 +
√

η1 − γ1

q1
(3.35)

where ξ1, η1, γ1, and q1 are well defined in “Appendix I”.
As we are concerned with the traversal of the wave in half-space, so as z → ∞, we have φ0(z) →

0 and φ̄(z) → 0. Due to this reason, neglecting positive roots of (3.33), we get

φ0(z) = A1e
−p1z + A2e

−p2z (3.36)

and φ̄(z) = C1e
−p1z + C2e

−p2z = m1A1e
−p1z + m2A2e

−p2z (3.37)

where for i = 1, 2, Ci
Ai

= pi 2−k2ā2

β̄1
= mi , and mi , Ai , and Ci are arbitrary constants.
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Putting the value of Q from (3.26) into Eq. (3.23), we have

d2ψ0

dz2
− k2b̄2ψ0(z) = 0 (3.38)

where b̄ is defined in “Appendix I”.
We know that as z → ∞ we have ψ0(z) → 0, so the solution of Eq. (3.38) is

ψ0(z) = A3e
−b̄kz (3.39)

where A3 is an arbitrary constant.
Now, substituting the values of φ̄(z), φ0(z), and ψ0(z) in relations (3.24), (3.25), and (3.26), we get

φ(x, z, t) = (m1A1e
−p1z + m2A2e

−p2z)eik(x−ct), (3.40)

L(x, z, t) = (A1e
−p1z + A2e

−p2z)eik(x−ct), (3.41)

and Q(x, z, t) = A3e
−b̄kzeik(x−ct). (3.42)

Substituting the values of L and Q in (3.21), we get the displacement components as

u2(x, z, t) =
[
ik(A1e

−p1z + A2e
−p2z) + b̄k A3e

−b̄kz
]
eik(x−ct) (3.43)

and w2(x, z, t) =
[

− (A1 p1e
−p1z + A2 p2e

−p2z) + ik A3e
−b̄kz

]
eik(x−ct). (3.44)

4 Boundary conditions and dispersion relation

Continuity of displacement and shearing stress components at the interface of the layer and half-space, the
stress-free case at the free surface of the layer and the presence of void pores provide suitable boundary
conditions as:

(i) At the interface z = 0, the displacement components are continuous,

i.e. u1 = u2
and w1 = w2.

(ii) Again at the interface z = 0, the shearing components of stresses are continuous,

i.e. τ (1)
xz = τ (2)

xz

and τ (1)
zz = τ (2)

zz .

(iii) At the upper boundary plane (free surface) z = −h, the shearing stress components vanish,

i.e. τ (1)
xz = 0

and τ (1)
zz = 0.

(iv) As the lower medium is considered as homogeneous elastic half-space with void pores, so at z = 0, we
can write

n · ∇φ = 0.

Now using the four boundary conditions and Eqs. (3.15), (3.16), (3.40), (3.43), and (3.44) simultaneously, we
reach the set of equations

M1 + M2 + M3 + M4 − ik A1 − ik A2 − b̄k A3 = 0, (4.1)

n1M1 + n2M2 + n3M3 + n4M4 + p1A1 + p2A2 − ik A3 = 0, (4.2)

a31M1 + a32M2 + a33M3 + a34M4 + a35A1 + a36A2 + a37A3 = 0, (4.3)
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a41M1 + a42M2 + a43M3 + a44M4 + a45A1 + a46A2 + a47A3 = 0, (4.4)

a51M1 + a52M2 + a53M3 + a54M4 = 0, (4.5)

a61M1 + a62M2 + a63M3 + a64M4 = 0, (4.6)

and p1m1A1 + p2m2A2 = 0 (4.7)

where the coefficients a31 to a37, a41 to a47, a51 to a54, and a61 to a64 are well defined in “Appendix I”.
Eliminating M1, M2, M3, M4, A1, A2, and A3 from Eqs. (4.1) to (4.7), we get

�(k, c) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 − ik − ik − b̄k
n1 n2 n3 n4 p1 p2 − ik
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 0 0 0
a61 a62 a63 a64 0 0 0
0 0 0 0 p1m1 p2m2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.8)

Equation (4.8) is the desired dispersion equation for Rayleigh wave propagation in an anisotropic elastic layer
under initial stress overlying an elastic half-space with void pores.

5 Particular cases

Case I

Considering μ15 = μ35 = 0, then Eq. (4.8) gets converted to

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 − ik − ik − b̄k
n11 n22 n33 n44 p1 p2 − ik
a311 a322 a333 a344 a35 a36 a37
a411 a422 a433 a444 a45 a46 a47
a511 a522 a533 a544 0 0 0
a611 a622 a633 a644 0 0 0
0 0 0 0 p1m1 p2m2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (5.1)

where the coefficients nii , a3i i , a4i i , a5i i , and a6i i (for i = 1, 2, 3, 4) are defined in “Appendix II”.
Equation (5.1) is the dispersion relation for Rayleigh wave propagation in a pre-stressed orthotropic layer

resting over a half-space with void pores.

Case II

Considering μ11 = μ33 = λ1 + 2μ1, μ13 = λ1, μ55 = μ1 and μ15 = μ35 = 0, then Eq. (4.8) gets converted
to

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 − ik − ik − b̄k
n111 n222 n333 n444 p1 p2 − ik
a3111 a3222 a3333 a3444 a35 a36 a37
a4111 a4222 a4333 a4444 a45 a46 a47
a5111 a5222 a5333 a5444 0 0 0
a6111 a6222 a6333 a6444 0 0 0
0 0 0 0 p1m1 p2m2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (5.2)

where the coefficients niii , a3i i i , a4i i i , a5i i i , and a6i i i (for i = 1, 2, 3, 4) are defined in “Appendix II”.
Equation (5.2) is the dispersion relation for Rayleigh wave propagation in a pre-stressed isotropic layer

resting over a half-space with void pores.
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Case III

Taking h = 0, then Eq. (4.8) gets reduced to
∣∣∣∣∣∣
a35 a36 a37
a45 a46 a47
p1m1 p2m2 0

∣∣∣∣∣∣ = 0. (5.3)

Equation (5.3) is the dispersion relation for Rayleigh waves traversing in a half-space with void pores.

Case IV

In the absence of initial stress, i.e. P = 0, and void parameters, i.e. ᾱ = ω̄ = ξ = β = k̄ = 0, Eq. (4.8) gets
reduced to

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 − 1 − 1
n

′
1 n

′
2 n

′
3 n

′
4 −m

′
1 −m

′
2

a
′
31 a

′
32 a

′
33 a

′
34 a

′
35 a

′
36

a
′
41 a

′
42 a

′
43 a

′
44 a

′
45 a

′
46

a
′
51 a

′
52 a

′
53 a

′
54 0 0

a
′
61 a

′
62 a

′
63 a

′
64 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.4)

where n
′
i (for i = 1, . . . , 4), m

′
1, m

′
2, a

′
3i (for i = 1, . . . , 6), a

′
4i (for i = 1, . . . , 6), a

′
5i (for i = 1, . . . , 4) and

a
′
6i (for i = 1, . . . , 4) are defined in “Appendix III”.
Equation (5.4) is the dispersion relation of Rayleigh waves propagating through an anisotropic layer resting

over an elastic half-space. This equation is in well agreement with the dispersion relation established by Pal
et al. [15], considering η = 1 in equation (34) of their study, i.e. when the half-space is considered to be an
elastic half-space instead of a sandy one.

Case V

In the absence of the superficial layer, i.e. h = 0, and void parameters, i.e. ᾱ = ω̄ = ξ = β = k̄ = 0, Eq.
(4.8) gets converted to

∣∣∣∣a
′
355 a

′
366

a
′
455 a

′
466

∣∣∣∣ = 0 (5.5)

where a
′
355, a

′
366, a

′
455 and a

′
466 are defined in “Appendix III”.

Equation (5.5) is the dispersion relation of Rayleigh waves traversing through an elastic half-space. This
relation coincides with the dispersion relation obtained by Pal et al. [15] in the special case IV of their study.

6 Numerical results and discussion

On the basis of dispersion relation (4.8), an extensive survey has been held out to shed light on the propagation
characteristics of Rayleigh waves in an initially stressed anisotropic layer lying over a half-space with void
pores. Generally, the wave number k is considered to be complex and thus can be manifested as k = k1+ ik2 =
k1(1+ iδ), where k1 and k2 are real entities and δ = Im[k]

Re[k] = k2
k1

(� 1) is termed as the attenuation coefficient.
Hence, the phase velocity of Rayleighwaves c can be expressed as c = ω

k1
.The dispersion Eq. (4.8) is separated

into real and imaginary components, and thus contributing the following relations:

Re[�(k1, c, δ)] = 0 (6.1)

and Im[�(k1, c, δ)] = 0. (6.2)



S. Kundu et al.

Fig. 2 Effect of initial stress P on the phase velocity of Rayleigh waves. Here, δ = 0.001

Equations (6.1) and (6.2) generate the dispersion or phase velocity curves (i.e. c versus Re[k]) and the atten-
uation curves (i.e. Log(δ) versus Re[k]), respectively. In usual practice, solving Eqs. (6.1) and (6.2) by an
analytical method is infeasible. Further, finding a solution of these equations numerically is also very strenu-
ous. Hence, in order to find numerical values of c and δ from Eqs. (6.1) and (6.2), the following steps of an
iterative technique given by Ke et al. [32] have been applied:

(i) Equation (6.1) has been solved for c by taking δ = 0 and fixing k1 or Re[k] at a particular value.
(ii) Equation (6.2) has been solved for getting δ by using the numerical value of c obtained from step (i).
(iii) Equation (6.1) has been again solved for c with the help of δ obtained from step (ii).
(iv) Steps (ii) and (iii) have been reiterated till the numerical values of c and δ obtained from two successive

iterations are within the expected span of errors.

The values of c and δ obtained by following the aforementioned steps have been utilized to plot the phase
velocity and attenuation curves, respectively. Numerical computations and plotting of Figures have been carried
out with the aid of the software Wolfram Mathematica (Version 9.0).

The most influencing parameters encountered in the presumed geometry are initial stress P and thickness
h of the stratum. The strong influence of these parameters on phase velocity and attenuation coefficient of
Rayleigh waves is depicted in Figs. 2, 3, 4, and 5. Moreover, to understand the effect of initial stress and
thickness on phase velocity and attenuation curves, a comparative study has been carried out considering
anisotropic, orthotropic, and isotropic strata, which is irradiated by Figs. 6, 7, 8, and 9. Also, Fig. 10 is plotted
to validate our obtained numerical results with a pre-existing special case in absence of initial stress. For
computational purposes, the following data have been considered:

(a) For a pre-stressed anisotropic layer (Rasolofosaon and Zinszner [33]):

μ11 = 106.8 GPa, μ12 = 27.1 GPa, μ13 = 9.68 GPa, μ14 = −0.03 GPa, μ15 = 0.28 GPa,
μ16 = 0.12 GPa, μ32 = 18.22 GPa, μ33 = 54.57 GPa, μ34 = 2.44 GPa, μ35 = −1.69 GPa,
μ36 = −0.75 GPa, μ52 = 0.13 GPa, μ54 = 1.98 GPa, μ55 = 25.03 GPa, μ56 = 1.44 GPa,
ρ1 = 2727 Kg/m3;

(b) For a half-space with void pores (Puri and Cowin [34]):

ω̄ = 0.008 GPa, β = 10 GPa, ξ = 12 GPa, ᾱ = 8 GPa, k̄ = 5 GPa, λ2 = 15 GPa, μ2 = 7.5 GPa, ρ2 = 2778
Kg/m3.
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Fig. 3 Effect of initial stress P on the attenuation coefficient of Rayleigh waves. Here, c = 2.5 Km/s and h = 0.1 Km

6.1 Influence of initial stress

Figures 2 and 3 exemplify the impact of initial stress associated with the layer on the dispersion curves (c vs.
Re[k]) and attenuation curves (Log(δ) vs. Re[k]), respectively. The numerical values assigned to the initial
stress P are 20 GPa, 22 GPa, and 24 GPa for curves 1, 2, and 3, simultaneously. In the presumed geometry
considering an anisotropic layer overlying a half-space with void pores, as the wave number (Re[k]) proceeds
towards higher values, the phase velocity of Rayleigh waves increases. But, with the growing value of wave
number, the attenuation exhibits a rising trend, attains a peak value, and then finally diminishes.

Moreover, it is remarked from Fig. 2 that the influence of initial stress on the dispersion curves is substantial
for the considered range of the wave number. The dispersion curves shift upwards as the magnitude of initial
stress rises, clearly depicting the fact that the traversal of Rayleigh waves becomes faster with the increment
in initial stress present in the layer.

Contrary to this, Fig. 3 elucidates the fact that the initial stress does not possess a prominent effect on
the attenuation of Rayleigh waves in the entire frequency regime of wave number. In the neighbourhood of
peak values of the attenuation curves, a rising value of initial stress disfavours the growth of the attenuation
coefficient. Further, for higher values of wave number and increasingmagnitude of initial stress, the attenuation
of Rayleigh waves becomes constant.

6.2 Influence of thickness of the layer

Figures 4 and 5 disclose the influence of thickness (h) of the layer on the dispersion and attenuation curves,
respectively. The curves 1, 2, and 3 are drawn for h = 0.1 Km, h = 0.2 Km, and h = 0.3 Km, respectively.

It is noted from Fig. 4 that with the increment in thickness of the layer the propagation of Rayleigh waves
becomes faster. In accession to the rising magnitude of thickness, if the initial stress (i.e. P = 20 GPa) is also
exerted on the layer, then the curves 1, 2, and 3 shift upwards, and the propagation velocity gets more enhanced
as compared to the stress-free case (i.e. P = 0).

Moreover, Fig. 5 irradiates the fact that in the absence of initial stress (i.e. P = 0), the attenuation curves 1,
2, and 3 (broken curves) indicate a decreasing trend with growing values of both wave number and thickness
of the layer. Contrary to this, when the initial stress (i.e. P = 20 GPa) has been exerted horizontally on the
layer, the attenuation curves exhibit different behaviours. All the curves 1, 2, and 3 rise up suddenly, attain
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Fig. 4 Plots of the Rayleigh wave velocity that is illustrated by the real part of the dispersion Eq. (4.8) for different values of
thickness h of the layer. The full curve represents the case when the initial stress is taken into account (P = 20 GPa), and the
broken curve represents the absence of initial stress in the layer (i.e. P = 0). Here, δ = 0.001

a maximum value and then diminish, as the wave number increases. The common fact that has been noticed
in both the cases is that the attenuation curves tend to get closer to each other with increasing the value of
thickness. Further, in the presence of initial stress, the attenuation coefficient is always lower than in the
stress-free case.

6.3 Comparative study

Two different layered Earth models have been considered for comparison with the present study. These are a
pre-stressed orthotropic layer overlying a half-space with void pores and pre-stressed isotropic layer overlying
a half-space with void pores. The dispersion relations for the above-mentioned geometries are obtained in
particular cases I and II, respectively. A comparative study has been carried out by plotting different curves
for anisotropic, orthotropic, and isotropic strata which is depicted in Figs. 6, 7, 8, and 9.

In Figs. 6 and 7, the influence of initial stress has been shown on the phase velocity and attenuation of
Rayleigh waves traversing through anisotropic, orthotropic, and isotropic layers. It is observed from both the
Figures that an increasing value of initial stress exhibits opposite trends on phase velocity and attenuation
coefficient. When the layer is anisotropic, with the increment in initial stress, the phase velocity increases,
whereas when the layer is orthotropic or isotropic, the phase velocity decreases. For a particular amount of
initial stress, the phase velocity is highest for an anisotropic layer, whereas lowest for an orthotropic layer.

This trend gets altered for the attenuation of Rayleigh waves, i.e. for an anisotropic layer, a growing value
of initial stress disfavours the growth of attenuation, but for orthotropic or isotropic layers favours the growth
of attenuation. For a fixed value of initial stress, attenuation is maximum for an orthotropic stratum, whereas
minimum for an anisotropic one.

Considering anisotropic, orthotropic, and isotropic strata one by one, the impact of thickness on phase
velocity and attenuation is exhibited in Figs. 8 and 9, respectively. It is noticed from Fig. 8 that as the thickness
of the stratum increases, the phase velocity of Rayleigh waves traversing through orthotropic or isotropic strata
diminishes, while this trend of phase velocity gets reversed for an anisotropic stratum, i.e. the phase velocity
enhances with the increment in thickness of the stratum. Moreover, Fig. 9 elucidates the fact that a rising value
of thickness possesses unfavourable influence on the attenuation coefficient of Rayleigh waves for anisotropic,
orthotropic, and isotropic cases.
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Fig. 5 Plots of the attenuation coefficient which is illustrated by the imaginary part of the dispersion Eq. (4.8) for different values
of the thickness h of the layer. The full curve represents the case when initial stress is taken into account (P = 20 GPa), and the
broken curve represents the absence of initial stress in the layer (i.e. P = 0). Here, c = 2.5 Km/s

Fig. 6 Effect of initial stress P on the phase velocity of Rayleigh waves for anisotropic, orthotropic, and isotropic layers. Here,
δ = 0.001 and h = 0.1 Km

6.4 Validation of the numerical results

For the validation of the obtained results of our study with a pre-established special case, Fig. 10 is plotted
depicting the pattern of phase velocity of Rayleigh waves. It is observed from Fig. 10 that in the absence of
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Fig. 7 Effect of initial stress P on the attenuation coefficient of Rayleigh waves for anisotropic, orthotropic, and isotropic layers.
Here, c = 2.5 Km/s and h = 0.1 Km

Fig. 8 Effect of the thickness h on phase velocity of Rayleigh waves for anisotropic, orthotropic, and isotropic layers. Here,
δ = 0.001 and P = 20 GPa

initial stress and void parameters the phase velocity of Rayleigh waves increases. This result obtained from
Fig. 10 coincides with the pre-existing result (i.e. increasing trend exhibited by the phase velocity curve 1 for
η = 1 in Fig. 3) obtained by Pal et al. [15]. Hence, it is clear from both the scenarios that the propagation of
Rayleigh waves becomes faster through an anisotropic layer lying over an isotropic half-space.
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Fig. 9 Effect of thickness h on the attenuation coefficient of Rayleigh waves for anisotropic, orthotropic, and isotropic layers.
Here, c = 2.5 Km/s and P = 20 GPa

Fig. 10 Variation of the phase velocity with respect to the wave number for an anisotropic layer, in the absence of initial stress,
i.e. P = 0 and void parameters, i.e. ᾱ = ω̄ = ξ = β = k̄ = 0. Here, δ = 0.001 and h = 0.1 Km

7 Concluding remarks

The main objective of the present work is to unfold the impact of initial stress and thickness on the propagation
characteristics of Rayleigh waves in an anisotropic layer overlying a half-space with void pores. Mathematical
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expressions for the displacements in layer and half-space have been deduced separately. Further, using suitable
boundary conditions along with the displacements in layer and half-space, the dispersion relation has been
obtained in determinant form. With the aid of the dispersion relation, five particular cases have also been
discussed. The phase velocity and attenuation of Rayleigh waves are found to be significantly influenced by
initial stress and thickness of the layer which have been well exhibited graphically. Apart from the traversal
of Rayleigh waves in an anisotropic layer, a graphical analysis has also been accomplished for studying the
propagation behaviour of these waves in orthotropic and isotropic layers, separately. The most important
highlights of the present study are summarized below:

• An increment in the magnitude of the wave number elevates the growth of the phase velocity, i.e. as the
wave number proceeds towards higher values, the propagation of Rayleigh waves becomes faster. But
this trend gets changed in case of attenuation, i.e. for increasing value of the wave number, initially the
attenuation increases, attains a peak value, and then finally diminishes.

• When the layer is anisotropic, a rising value of initial stress exerted on the layer possesses favourable impact
on phase velocity and unfavourable impact on the attenuation of Rayleigh waves, while the influence of
initial stress gets altered when the considered layer is an orthotropic or isotropic one, i.e. with increasing
value of initial stress, the phase velocity decreases whereas the attenuation increases.

• For a specific value of thickness or initial stress, the phase velocity of Rayleigh waves propagating through
an anisotropic layer is highest, whereas lowest while propagating through an orthotropic layer.

• Attenuation always decreases with the increase in thickness, when Rayleigh waves traverse through
anisotropic, orthotropic, and isotropic layers.

• Magmatic or igneous rocks account for more than 90% of the Earth’s crust. These are highly anisotropic in
nature. Some of these rocks exhibit vesicular texture (i.e. holes or pores), too. Due to the rapid cooling of
magma, some of the dissolved gases are unable to emanate, and thus vesicles or pores are formed in these
rocks. This work may serve as a helpful tool in the interpretation of data in seismic prospecting techniques
used in the regions where igneous rocks are found.
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Appendix I

a11 = (
μ55 − P

2

)
s2 − 2iμ15s + (

ρ1c2 − μ11
)
,

a12 = μ35s2 − i
(
μ13 + μ55 + P

2

)
s − μ15,

a13 = μ35s2 − i
(
μ13 + μ55 − P

2

)
s − μ15,

a14 = μ33s2 − 2iμ35s + (
ρ1c2 − (μ55 + P

2 )
)
,

a0 = 1
2

(−2μ2
35 − μ33(P − 2μ55)

)
,

a1 = 1
2 (−4iμ15μ33 + 2iPμ35 + 4iμ13μ35) ,

a2 = 1
2

(
2μ2

13 − 2μ11μ33 − 4μ15μ35 + 4μ13μ55 − c2Pρ1 + 2c2(μ13 + μ55)ρ1
)
,

a3 = 1
2

(
2iPμ15 − 4iμ13μ15 + 4iμ11μ35 − 4ic2μ15ρ1 − 4ic2μ35ρ1

)
,

a4 = 1
2

(
Pμ11 − 2μ2

15 + 2μ11μ55 − c2Pρ1 − 2c2μ11ρ1 − 2c2μ55ρ1 + 2c4ρ2
1

)
,

α1 =
√

λ2+2μ2
ρ2

,
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β̄1 = − β
λ2+2μ2

,

α2 =
√

μ2
ρ2

,

ā =
√
1 − c2

α2
1
,

b11 = p2 − k2ā2,
b13 = −β̄1,

b31 = βk2 − βp2,
b33 = ᾱ p2 + iω̄kc − k2ᾱ − ξ + ρ1k̄k2c2,

ξ1 = k2
2 + ā2k2

2 + ξ
2ᾱ − ickω̄

2ᾱ + ββ̄1
2ᾱ − c2k2 k̄ρ2

2ᾱ ,

η1 = ( − k2ᾱ − ā2k2ᾱ − ξ + ickω̄ − ββ̄1 + c2k2k̄ρ2
)2

,

γ1 = 4ᾱ
(
ā2k4ᾱ + ā2k2ξ − iā2ck3ω̄ + k2ββ̄ − ā2c2k4k̄ρ2

)
,

q1 = 2ᾱ,

b̄ =
√
1 − c2

α2
2
,

a3i = k(iμ15 − μ35ni si − μ55si + iμ55ni ) for i = 1, 2, 3, and 4,

a35 = 2ikμ2 p1,

a36 = 2ikμ2 p2,

a37 = k2μ2
(
1 + b̄2

)
,

a4i = k(iμ13 − μ33ni si − μ35si + iμ35ni ) for i = 1, 2, 3, and 4,

a45 = λ2k2 − (
λ2 + 2μ2

)
p21,

a46 = λ2k2 − (
λ2 + 2μ2

)
p22,

a47 = 2iμ2b̄k2,

a5i = keksi h(iμ15 − μ35ni si − μ55si + iμ55ni ) for i = 1, 2, 3, and 4,

a6i = keksi h(iμ13 − μ33ni si − μ35si + iμ35ni ) for i = 1, 2, 3, and 4.

Appendix II

χ1 = Pμ33 − 2μ33μ55,

χ2 = μ2
13 − μ11μ33 + 2μ13μ55 − c2Pρ1

2 + c2μ33ρ1 + c2μ55ρ1,

χ3 = −2μ2
13 + 2μ11μ33 − 4μ13μ55 + c2Pρ1 − 2c2μ33ρ1 − 2c2μ55ρ1,

χ4 = −Pμ11 − 2μ11μ15 + c2Pρ1 + 2c2μ11ρ1 + 2c2μ55ρ1 − 2c4ρ2
1 ,

s11 =
√

1
χ1

(
χ2 −

√
χ2
3−4χ1χ4

2

)
,

s22 = −
√

1
χ1

(
χ2 −

√
χ2
3−4χ1χ4

2

)
,

s33 =
√

1
χ1

(
χ2 +

√
χ2
3−4χ1χ4

2

)
,

s44 = −
√

1
χ1

(
χ2 +

√
χ2
3−4χ1χ4

2

)
,



S. Kundu et al.

nii =
(
μ55− P

2

)
s2i i+

(
ρ1c2−μ11

)
i
(
μ13+μ55+ P

2

)
sii

for i = 1, 2, 3, and 4,

a3i i = k(−μ55sii + iμ55nii ) for i = 1, 2, 3, and 4,

a4i i = k(iμ13 − μ33nii sii ) for i = 1, 2, 3, and 4,

a5i i = keksii h(−μ55sii + iμ55nii ) for i = 1, 2, 3, and 4,

a6i i = keksii h(iμ13 − μ33nii sii ) for i = 1, 2, 3, and 4,

s111 =
√

−P−2μ1+2c2ρ1
P−2μ1

,

s222 = −
√

−P−2μ1+2c2ρ1
P−2μ1

,

s333 =
√
1 − ρ1c2

λ1+2μ1
,

s444 = −
√
1 − ρ1c2

λ1+2μ1
,

niii =
(
μ1− P

2

)
s2i i i+

(
ρ1c2−(λ1+2μ1)

)
i
(
λ1+μ1+ P

2

)
siii

for i = 1, 2, 3, and 4,

a3i i i = −kμ1(siii − iniii ) for i = 1, 2, 3, and 4,

a4i i i = k(iλ1 − (λ1 + 2μ1)niii sii i ) for i = 1, 2, 3, and 4,

a5i i i = −kμ1eksiii h(siii − iniii ) for i = 1, 2, 3, and 4,

a6i i i = keksiii h(iλ1 − (λ1 + 2μ1)niii sii i ) for i = 1, 2, 3, and 4.

Appendix III

a
′
0 = −μ2

35 + μ33μ55,

a
′
1 = −2iμ15μ33 + 2iμ13μ35,

a
′
2 = μ2

13 − μ11μ33 − 2μ15μ35 + 2μ13μ55 + c2(μ13 + μ55)ρ1,

a
′
3 = −2iμ13μ15 + 2iμ11μ35 − 2ic2μ15ρ1 − 2ic2μ35ρ1,

a
′
4 = −μ2

15 + μ11μ55 − c2μ11ρ1 − c2μ55ρ1 + c4ρ2
1 ,

s
′
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0s
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′
1s

3 + a
′
2s
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′
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m
′
1 = c2−α2
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2
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2)
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m
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2
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2)
,

a
′
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′
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′
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′
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′
i for i = 1, 2, 3, and 4,

a
′
35 = −μ2(im

′
1 − ā),

a
′
36 = −μ2(im

′
2 − b̄),

a
′
4i = iμ13 − μ33n

′
i s

′
i − μ35s

′
i + iμ35n

′
i for i = 1, 2, 3, and 4,

a
′
45 = −

(
iλ2 − (λ2 + 2μ2)m

′
1ā

)
,

a
′
46 = −

(
iλ2 − (λ2 + 2μ2)m

′
2b̄

)
,
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a
′
5i = eks

′
i h(iμ15 − μ35n

′
i s

′
i − μ55s

′
i + iμ55n

′
i ) for i = 1, 2, 3, and 4,

a
′
6i = eks

′
i h(iμ13 − μ33n

′
i s

′
i − μ35s

′
i + iμ35n

′
i ) for i = 1, 2, 3, and 4,

a
′
355 = im

′
1 − ā,

a
′
366 = im

′
2 − b̄,

a
′
455 = iλ2 − (λ2 + 2μ2)m

′
1ā,

a
′
466 = iλ2 − (λ2 + 2μ2)m

′
2b̄.
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